减少斑点并限制合成孔径雷达(SAR)图像中物理参数的变化通常是完全利用此类数据潜力的关键步骤。如今,深度学习方法产生了最新的现状,从而导致单位SAR修复。然而,现在经常可用巨大的多阶梯堆栈,并且可以有效利用以进一步提高图像质量。本文探讨了两种快速的策略,这些策略采用单像伪装算法,即SAR2SAR,在多个阶段的框架中。第一个是基于Quegan过滤器,并取代了SAR2SAR的局部反射率预估计。第二个使用SAR2SAR来抑制从“超级图像”的形式(即时间序列的时间算术平均值)形式的形式编码多个时间段信息的比率图像中抑制斑点。 Sentinel-1 GRD数据的实验结果表明,这两种多时间策略提供了改进的过滤结果,同时增加了有限的计算成本。
translated by 谷歌翻译
斑点过滤通常是分析合成孔径雷达(SAR)图像的先决条件。在单像伪装的领域取得了巨大进步。最新技术依靠深度神经网络来恢复SAR图像特有的各种结构和纹理。 SAR图像的时间序列的可用性提供了通过在同一区域结合不同斑点实现来改善斑点过滤的可能性。深度神经网络的监督培训需要无基真斑点图像。这样的图像只能通过某种平均形式,空间或时间整合间接获得,并且不完美。考虑到通过多阶段斑点滤波可以达到非常高质量的恢复的潜力,需要规避地面真相图像的局限性。我们将最新的自我监督训练策略扩展到了称为Merlin的单外观复杂SAR图像的情况,以进行多个颞滤波。这需要对空间和时间维度以及复杂幅度的真实组件和虚构组件之间的统计依赖性来源进行建模。使用模拟斑点上的数据集进行定量分析表明,当包括其他SAR图像时,斑点减少了明显改善。然后,将我们的方法应用于Terrasar-X图像的堆栈,并显示出优于竞争的多阶段斑点滤波方法。在$ \ href {https://gitlab.telecom-paris.fr/ring/multi-temporal-merlin/} {\ text {gitlab}} $上LTCI实验室,T \'El \'Ecom Paris Institut Polytechnique de Paris。
translated by 谷歌翻译
斑点波动严重限制了合成孔径雷达(SAR)图像的可解释性。因此,散斑减少是跨越至少四十年的众多作品的主题。基于深度神经网络的技术最近在SAR图像恢复质量方面实现了一种新的性能。超出了合适的网络架构的设计或选择足够的损失功能,培训集的构建是最重要的。到目前为止,大多数方法都考虑了监督培训策略:培训网络以产生尽可能靠近斑点的参考图像的输出。无斑点图像通常不可用,这需要采用自然或光学图像或在长时间序列中选择稳定区域,以规避缺乏地面真理。另一方面,自我监督避免使用无斑点图像。我们介绍了一个自我监督的战略,基于单眼复杂的SAR图像的真实和虚构部分的分离,称为Merlin(复杂的自我监督的机除),并表明它提供了一种培训各种深度掠夺的直接途径网络。由于特定于给定传感器和成像模式的SAR传输功能,使用Merlin培训的网络考虑了空间相关性。通过只需要一个图像,并且可能利用大型档案,Merlin将门打开了无忧无虑的机器,以及对机器网络的大规模培训。培训型号的代码是在https://gitlab.telecom-paris.fr/ring/mollin的。
translated by 谷歌翻译
Probabilistic Law Discovery (PLD) is a logic based Machine Learning method, which implements a variant of probabilistic rule learning. In several aspects, PLD is close to Decision Tree/Random Forest methods, but it differs significantly in how relevant rules are defined. The learning procedure of PLD solves the optimization problem related to the search for rules (called probabilistic laws), which have a minimal length and relatively high probability. At inference, ensembles of these rules are used for prediction. Probabilistic laws are human-readable and PLD based models are transparent and inherently interpretable. Applications of PLD include classification/clusterization/regression tasks, as well as time series analysis/anomaly detection and adaptive (robotic) control. In this paper, we outline the main principles of PLD, highlight its benefits and limitations and provide some application guidelines.
translated by 谷歌翻译
We study the multiclass classification problem where the features come from the mixture of time-homogeneous diffusions. Specifically, the classes are discriminated by their drift functions while the diffusion coefficient is common to all classes and unknown. In this framework, we build a plug-in classifier which relies on nonparametric estimators of the drift and diffusion functions. We first establish the consistency of our classification procedure under mild assumptions and then provide rates of cnvergence under different set of assumptions. Finally, a numerical study supports our theoretical findings.
translated by 谷歌翻译
In many real-world scenarios, the absence of external knowledge source like Wikipedia restricts question answering systems to rely on latent internal knowledge in limited dialogue data. In addition, humans often seek answers by asking several questions for more comprehensive information. As the dialog becomes more extensive, machines are challenged to refer to previous conversation rounds to answer questions. In this work, we propose to leverage latent knowledge in existing conversation logs via a neural Retrieval-Reading system, enhanced with a TFIDF-based text summarizer refining lengthy conversational history to alleviate the long context issue. Our experiments show that our Retrieval-Reading system can exploit retrieved background knowledge to generate significantly better answers. The results also indicate that our context summarizer significantly helps both the retriever and the reader by introducing more concise and less noisy contextual information.
translated by 谷歌翻译
While the problem of hallucinations in neural machine translation has long been recognized, so far the progress on its alleviation is very little. Indeed, recently it turned out that without artificially encouraging models to hallucinate, previously existing methods fall short and even the standard sequence log-probability is more informative. It means that characteristics internal to the model can give much more information than we expect, and before using external models and measures, we first need to ask: how far can we go if we use nothing but the translation model itself ? We propose to use a method that evaluates the percentage of the source contribution to a generated translation. Intuitively, hallucinations are translations "detached" from the source, hence they can be identified by low source contribution. This method improves detection accuracy for the most severe hallucinations by a factor of 2 and is able to alleviate hallucinations at test time on par with the previous best approach that relies on external models. Next, if we move away from internal model characteristics and allow external tools, we show that using sentence similarity from cross-lingual embeddings further improves these results.
translated by 谷歌翻译
Transformer models have achieved superior performance in various natural language processing tasks. However, the quadratic computational cost of the attention mechanism limits its practicality for long sequences. There are existing attention variants that improve the computational efficiency, but they have limited ability to effectively compute global information. In parallel to Transformer models, state space models (SSMs) are tailored for long sequences, but they are not flexible enough to capture complicated local information. We propose SPADE, short for $\underline{\textbf{S}}$tate s$\underline{\textbf{P}}$ace $\underline{\textbf{A}}$ugmente$\underline{\textbf{D}}$ Transform$\underline{\textbf{E}}$r. Specifically, we augment a SSM into the bottom layer of SPADE, and we employ efficient local attention methods for the other layers. The SSM augments global information, which complements the lack of long-range dependency issue in local attention methods. Experimental results on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method. To further demonstrate the scalability of SPADE, we pre-train large encoder-decoder models and present fine-tuning results on natural language understanding and natural language generation tasks.
translated by 谷歌翻译
Pre-trained language models (PLM) have advanced the state-of-the-art across NLP applications, but lack domain-specific knowledge that does not naturally occur in pre-training data. Previous studies augmented PLMs with symbolic knowledge for different downstream NLP tasks. However, knowledge bases (KBs) utilized in these studies are usually large-scale and static, in contrast to small, domain-specific, and modifiable knowledge bases that are prominent in real-world task-oriented dialogue (TOD) systems. In this paper, we showcase the advantages of injecting domain-specific knowledge prior to fine-tuning on TOD tasks. To this end, we utilize light-weight adapters that can be easily integrated with PLMs and serve as a repository for facts learned from different KBs. To measure the efficacy of proposed knowledge injection methods, we introduce Knowledge Probing using Response Selection (KPRS) -- a probe designed specifically for TOD models. Experiments on KPRS and the response generation task show improvements of knowledge injection with adapters over strong baselines.
translated by 谷歌翻译
Creating realistic virtual assets is a time-consuming process: it usually involves an artist designing the object, then spending a lot of effort on tweaking its appearance. Intricate details and certain effects, such as subsurface scattering, elude representation using real-time BRDFs, making it impossible to fully capture the appearance of certain objects. Inspired by the recent progress of neural rendering, we propose an approach for capturing real-world objects in everyday environments faithfully and fast. We use a novel neural representation to reconstruct volumetric effects, such as translucent object parts, and preserve photorealistic object appearance. To support real-time rendering without compromising rendering quality, our model uses a grid of features and a small MLP decoder that is transpiled into efficient shader code with interactive framerates. This leads to a seamless integration of the proposed neural assets with existing mesh environments and objects. Thanks to the use of standard shader code rendering is portable across many existing hardware and software systems.
translated by 谷歌翻译